First-principles investigations on the mechanical, thermal, electronic, and optical properties of the defect perovskites Cs2SnX6 (X = Cl, Br, I)
Huang Hai-Ming1, 2, Jiang Zhen-Yi1, †, Luo Shi-Jun2
Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Model Physics, Northwest University, Xi’an 710069, China
School of Science, Hubei University of Automotive Technology, Shiyan 442002, China

 

† Corresponding author. E-mail: jiangzy@nwu.edu.cn

Project supported by the National Natural Science Foundation of China (Grant Nos. 51572219 and 11447030), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2015JM1018), and Graduate’s Innovation Fund of Northwest University of China (Grant No. YJG15007).

Abstract
<p>The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hybrid functional. The optic band gaps based on HSE06 are 3.83 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, 2.36 eV for Cs<sub>2</sub>SnBr<sub>6</sub>, and 0.92 eV for Cs<sub>2</sub>SnI<sub>6</sub>, which agree with the experimental results. The Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub>, and Cs<sub>2</sub>SnI<sub>6</sub> are mechanically stable and they are all anisotropic and ductile in nature. Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals, whereas the valence band is composed of the halogen p orbitals. Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region, and the absorption spectra red shift with the increase in the number of halogen atoms. The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells.</p> </abstract></div> </div> <div class="key"> <span class="key_title outline_anchor">PACS</span>: <a style="text-decoration:underline;" href="https://cpb.iphy.ac.cn/EN/article/showArticleBySubjectScheme.do?code=63.20.dk">63.20.dk</a>;<a style="text-decoration:underline;" href="https://cpb.iphy.ac.cn/EN/article/showArticleBySubjectScheme.do?code=71.20.-b">71.20.-b</a>;<a style="text-decoration:underline;" href="https://cpb.iphy.ac.cn/EN/article/showArticleBySubjectScheme.do?code=87.19.rd">87.19.rd</a>;<a style="text-decoration:underline;" href="https://cpb.iphy.ac.cn/EN/article/showArticleBySubjectScheme.do?code=78.40.Fy">78.40.Fy</a> </div> <div class="key"> <span class="key_title outline_anchor">Keyword</span>:<a style="text-decoration:underline;" href="https://cpb.iphy.ac.cn/EN/article/showCorrelativeArticle.do?keyword=first-principles calculation" target=_blank>first-principles calculation</a>;<a style="text-decoration:underline;" href="https://cpb.iphy.ac.cn/EN/article/showCorrelativeArticle.do?keyword=perovskites" target=_blank>perovskites</a>;<a style="text-decoration:underline;" href="https://cpb.iphy.ac.cn/EN/article/showCorrelativeArticle.do?keyword=elastic properties" target=_blank>elastic properties</a>;<a style="text-decoration:underline;" href="https://cpb.iphy.ac.cn/EN/article/showCorrelativeArticle.do?keyword=optical properties" target=_blank>optical properties</a> </div> <div id="open1" align="right" > <a href="javascript:;" class="fig_sort" type="1">Show Figures</a> </div> <div style="display: none;" id="open2" align="right" > <a href="javascript:;" class="fig_sort" type="2">Show Figures</a> </div> <div style="display: none;" id="figshowId" ><div class="con"><div id="carousel_container"><div id="left_scroll"></div><div id="carousel_inner"><ul id="carousel_ul"> <li><a href="#cpb_26_9_096301_f1"><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f1.jpg" original="cpb_26_9_096301/cpb_26_9_096301_f1.jpg" width=220px border="0"></a></li><li><a href="#cpb_26_9_096301_f2"><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f2.jpg" original="cpb_26_9_096301/cpb_26_9_096301_f2.jpg" width=220px border="0"></a></li><li><a href="#cpb_26_9_096301_f3"><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f3.jpg" original="cpb_26_9_096301/cpb_26_9_096301_f3.jpg" width=220px border="0"></a></li><li><a href="#cpb_26_9_096301_f4"><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f4.jpg" original="cpb_26_9_096301/cpb_26_9_096301_f4.jpg" width=220px border="0"></a></li><li><a href="#cpb_26_9_096301_f5"><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f5.jpg" original="cpb_26_9_096301/cpb_26_9_096301_f5.jpg" width=220px border="0"></a></li><li><a href="#cpb_26_9_096301_f6"><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f6.jpg" original="cpb_26_9_096301/cpb_26_9_096301_f6.jpg" width=220px border="0"></a></li><li><a href="#cpb_26_9_096301_f7"><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f7.jpg" original="cpb_26_9_096301/cpb_26_9_096301_f7.jpg" width=220px border="0"></a></li> </ul></div><div id="right_scroll"></div></div></div></div> <div class="article_body"> <div class="paragraph"><span class="paragraph_title outline_anchor" level="1">1. Introduction</span><p>Perovskites compounds, especially pure inorganic and inorganic/organic halides, such as CsSnI<sub>3</sub>, methyl ammonium lead iodide CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, and formamidinium lead iodide HC(NH<sub>2</sub>)<sub>2</sub>PbI<sub>3</sub>, have been proved to be some of the most promising materials in solar cells.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib1">1</a></span>–<span class="xref"><a href="#cpb_26_9_096301_bib3">3</a></span>]</sup> The <em>ABX</em><sub>3</sub> type halide-based hybrid perovskites, where <em>A</em> is a metal atom or molecular cation, <em>B</em> is Sn or Pb, and <em>X</em> is a halide atom (Cl, Br, or I), are attracting an increasing amount of attention for applications due to advantageous optical properties and high power conversion efficiency.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib4">4</a></span>–<span class="xref"><a href="#cpb_26_9_096301_bib10">10</a></span>]</sup> Since Miyasaka <em>et al</em>.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib11">11</a></span>]</sup> pioneered the incorporation of the hybrid organic–inorganic perovskite halides CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> into solar cells, the power conversion efficiency of this kind of solar cell increased from the begging of 3.8% to the current 20.1% in a few years.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib12">12</a></span>]</sup> However, the presence of toxic elements and instabilities of these perovskites halides greatly limit their widespread applications in efficient field-effect transistors light-emitting diodes, and photovoltaic devices.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib13">13</a></span>–<span class="xref"><a href="#cpb_26_9_096301_bib17">17</a></span>]</sup> Therefore, looking for non-toxic, environmentally friendly, and high conversion efficiency of new perovskite-type solar cell materials has become a current research hotspot.</p><p>Recently, Falaras <em>et al</em>.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib18">18</a></span>]</sup> reported three defect perovskites compounds Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I). They found Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub>, and Cs<sub>2</sub>SnI<sub>6</sub> are all direct band gap semiconductors and can be used in dye-sensitized solar cells. They also found these three compounds are air-stable, and the dye-sensitized solar cells based on Cs<sub>2</sub>SnI<sub>6</sub> hole-transporting materials present a power conversion efficiency of 4.23% at 1 sun illumination. Neilson <em>et al</em>.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib19">19</a></span>]</sup> pointed out that the greatest advantage of this kind of defect perovskites is that the Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> compounds contain Sn<sup>4+</sup> rather than Sn<sup>2+</sup> in the B-site, which makes it more stable under exposure to air and moisture. However, Xiao<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib20">20</a></span>]</sup> and colleagues indicated the real valence state of Sn in Cs<sub>2</sub>SnI<sub>6</sub> is +2 rather than +4. Although there are different opinions about the valence state of Sn cations in the defect perovskites compounds, it does not prevent the researchers from doing theoretical and experimental investigations on the new lead-free perovskite solar cell materials.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib21">21</a></span>–<span class="xref"><a href="#cpb_26_9_096301_bib23">23</a></span>]</sup></p><p>The mechanical and thermal properties of perovskite are important for practical applications in solar cells. On the one hand, the absorption performances of perovskite solar cell strongly rely on the crystallinity and stress state of the perovskite layer.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib24">24</a></span>]</sup> On the other hand, as very important thermal parameters, the Debye temperature and melting temperature are related to the bond strength, which is important for the preparation of solar cell devices. Therefore, it is essential to study the mechanical and thermal properties of perovskite type solar cell materials. In this paper, we study the structural, mechanical, thermal, electronic and optical properties of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I) by first-principles calculations. Our findings shed light on the key properties that are hard to measure experimentally and probing the lead-free solar cells materials.</p></div><div class="paragraph"><span class="paragraph_title outline_anchor" level="1">2. Computational details</span><p>First-principles calculations were carried out to study various physical properties of the defect perovskites by using the Vienna <em>ab initio</em> simulation package (VASP).<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib25">25</a></span>]</sup> Generalized gradient approximation (GGA) of Perdew–Burke–Ernzerh (PBE) was used to describe the exchange-correlation functional.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib26">26</a></span>]</sup> It is well known that PBE usually underestimates the band-gap, which will result in unreasonable optic properties. In order to overcome this predicament, band gap correction was considered by using range separated hybrid functional (HSE06),<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib27">27</a></span>]</sup> which can give improved approximate results to match with experimental data. The electronic configurations: 6s<sup>1</sup> for Cs, 5s<sup>2</sup>5p<sup>2</sup> for Sn, 3s<sup>2</sup>3p<sup>5</sup> for Cl, 4s<sup>2</sup>4p<sup>5</sup> for Br, and 5s<sup>2</sup>5p<sup>5</sup> for I were used in calculations. The plane wave cut-off energy was set to 450 eV. A mesh of 9×9×9 <em>k</em>-points was used for calculating the electronic, mechanical, thermal, and optic properties. The convergence tolerances of the energy and the force are 1.0 × 10<sup>−6</sup> eV and 1.0 × 10<sup>−2</sup> eV/Å, respectively.</p></div><div class="paragraph"><span class="paragraph_title outline_anchor" level="1">3. Results and discussion</span><div class="paragraph"><span class="paragraph_title outline_anchor" level="1">3.1. Structural properties</span><p>Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> chemical composition presents the cubic antifluorite phase with the space group <em>Fm</em>-3<em>m</em> in cubic structure as shown in Fig. <xref ref-type="fig" rid="cpb_26_9_096301_f1">1</xref>. In this structure, the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> own the same structure with K<sub>2</sub>PtCl<sub>6</sub>, in which the isolated [Sn<em>X</em><sub>6</sub>]<sup>2−</sup> anions octahedra bridged by Cs<sup>+</sup> cations, the Sn<sup>4+</sup> cations formed a face centered cubic lattice and are surrounded by an <em>X</em><sub>6</sub> octahedral.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib17">17</a></span>–<span class="xref"><a href="#cpb_26_9_096301_bib28">28</a></span>]</sup> Firstly, a volume optimization process was carried out to predict the optimal structure. Calculated equilibrium lattice constants are summarized and compared with available theoretical and experimental data in Table <xref ref-type="table" rid="cpb_26_9_096301_t1">1</xref>.</p><div class="figure outline_anchor"><div class="figure_anchor" style="display: none; "><b>Fig. 1.</b></div><table><tr><td></td><td align="right" valign="top" ><ul id="sddm"><li><a href="#" onmouseover="mopen('cpb_26_9_096301_f1A')" onmouseout="mclosetime()">Figure Option</a><div id="cpb_26_9_096301_f1A" onmouseover="mcancelclosetime()" onmouseout="mclosetime()"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f1.jpg" title=' <p>(color online) Crystal structure of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I). Thick blue lines represent the unit cell edges.</p> '>View</a><a href="cpb_26_9_096301/cpb_26_9_096301_f1.jpg.zip" >Download</a><a href="cpb_26_9_096301/cpb_26_9_096301_f1.jpg.html" target="_blank" >New Window</a></div></li></ul></td></tr><tr id="cpb_26_9_096301_f1" ><td align="center" valign="middle"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f1.jpg" title=' <p>(color online) Crystal structure of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I). Thick blue lines represent the unit cell edges.</p> '><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f1.jpg" style="max-width: 350px" /></a></td><td align="left" valign="middle"><span class="caption"><b>Fig. 1.</b> (color online) Crystal structure of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I). Thick blue lines represent the unit cell edges.</span></td></tr></table></div><div class="table outline_anchor"><div class="table_anchor" style="display: none; "><b>Table 1.</b></div><div class="caption_title" style="display: none; "><b>Table 1.</b></div><table><tr><td class="table-icon-td"><img class="table-icon" src="https://cpb.iphy.ac.cn/html_resources/images/table-icon.gif"/><div style="display: none; " class="table_content"><span class="caption"> <b>Table 1.</b> <p>Optimized lattice constants (Å) of Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I). Experimental and other theoretical values are included.</p> .</span><table frame="hsides" rules="groups"> <colgroup> <col align="center"/> <col align="center"/> <col align="center"/> <col align="center"/> </colgroup> <thead> <tr> <th align="center">Compounds</th> <th align="center">Cs<sub>2</sub>SnCl<sub>6</sub></th> <th align="center">Cs<sub>2</sub>SnBr<sub>6</sub></th> <th align="center">Cs<sub>2</sub>SnI<sub>6</sub></th> </tr> </thead> <tbody> <tr> <td align="center">Present</td> <td align="center">10.384</td> <td align="center">11.021</td> <td align="center">11.935</td> </tr> <tr> <td align="center">Experimental</td> <td align="center">10.382<sup><xref rid="cpb_26_9_096301_t1fn1" ref-type="fn">a</xref></sup></td> <td align="center">10.837<sup><xref rid="cpb_26_9_096301_t1fn1" ref-type="fn">a</xref></sup></td> <td align="center">11.638<sup><xref rid="cpb_26_9_096301_t1fn1" ref-type="fn">a</xref></sup></td> </tr> <tr> <td align="center"/> <td align="center">10.3552<sup><xref rid="cpb_26_9_096301_t1fn2" ref-type="fn">b</xref></sup></td> <td align="center">10.770<sup><xref rid="cpb_26_9_096301_t1fn3" ref-type="fn">c</xref></sup></td> <td align="center">11.652<sup><xref rid="cpb_26_9_096301_t1fn4" ref-type="fn">d</xref></sup></td> </tr> <tr> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center">11.627<sup><xref rid="cpb_26_9_096301_t1fn5" ref-type="fn">e</xref></sup></td> </tr> <tr> <td align="center">Theoretical</td> <td align="center">10.846<sup><xref rid="cpb_26_9_096301_t1fn1" ref-type="fn">a</xref></sup></td> <td align="center">11.218<sup><xref rid="cpb_26_9_096301_t1fn1" ref-type="fn">a</xref></sup></td> <td align="center">12.016<sup><xref rid="cpb_26_9_096301_t1fn1" ref-type="fn">a</xref></sup></td> </tr> <tr> <td align="center"/> <td align="center">10.724<sup><xref rid="cpb_26_9_096301_t1fn6" ref-type="fn">f</xref></sup></td> <td align="center">11.243<sup><xref rid="cpb_26_9_096301_t1fn6" ref-type="fn">f</xref></sup></td> <td align="center">12.032<sup><xref rid="cpb_26_9_096301_t1fn6" ref-type="fn">f</xref></sup></td> </tr> </tbody> </table><table-wrap-foot> <fn id="cpb_26_9_096301_t1fn1"> <label>a</label> <p>Ref. [<span class="xref"><a href="#cpb_26_9_096301_bib17">17</a></span>].</p> </fn> <fn id="cpb_26_9_096301_t1fn2"> <label>b</label> <p>Ref. [<span class="xref"><a href="#cpb_26_9_096301_bib28">28</a></span>].</p> </fn> <fn id="cpb_26_9_096301_t1fn3"> <label>c</label> <p>Ref. [<span class="xref"><a href="#cpb_26_9_096301_bib29">29</a></span>].</p> </fn> <fn id="cpb_26_9_096301_t1fn4"> <label>d</label> <p>Ref. [<span class="xref"><a href="#cpb_26_9_096301_bib30">30</a></span>].</p> </fn> <fn id="cpb_26_9_096301_t1fn5"> <label>e</label> <p>Ref. [<span class="xref"><a href="#cpb_26_9_096301_bib31">31</a></span>].</p> </fn> <fn id="cpb_26_9_096301_t1fn6"> <label>f</label> <p>Ref. [<span class="xref"><a href="#cpb_26_9_096301_bib32">32</a></span>].</p> </fn> </table-wrap-foot></div></td><td align="left" valign="middle"><span class="caption"> <b>Table 1.</b> <p>Optimized lattice constants (Å) of Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I). Experimental and other theoretical values are included.</p> .</span></td></tr></table></div><p>One can observe that the optimized lattice constants of Cs<sub>2</sub>SnCl<sub>6</sub> are almost the same as those of the experimental results. However, there is a slight deviation for Cs<sub>2</sub>SnBr<sub>6</sub> and for Cs<sub>2</sub>SnI<sub>6</sub>, respectively. This slight deviation does not affect further research. On the whole, there is a good agreement between the optimized lattice constants and the experimental findings and available theoretical data. Furthermore, one can see that the lattice constants increase in the order from Cs<sub>2</sub>SnCl<sub>6</sub> to Cs<sub>2</sub>SnBr<sub>6</sub> to Cs<sub>2</sub>SnI<sub>6</sub>. The phenomenon is due mainly to the size differences between the univalent anion Cl<sup>−</sup>, Br<sup>−</sup>, and I<sup>−</sup>.</p></div><div class="paragraph"><span class="paragraph_title outline_anchor" level="1">3.2. Mechanical properties</span><p>It is known that first-principles methods are often used to calculate reliable elastic properties of solid materials. The criterions for mechanical stability of cubic crystals are given by<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib33">33</a></span>]</sup> <table style="width:100%;"><tr><td align="center"><img src="cpb_26_9_096301/cpb_26_9_096301_eqn001.gif" style="max-width: 350px"/></td><td style="width:20px;"></td></tr></table> </p><p>Table <xref ref-type="table" rid="cpb_26_9_096301_t2">2</xref> summarizes the calculated elastic constants <em>C</em><sub><em>ij</em></sub> of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub>. One can see that the elastic constants satisfy these generalized stability criterions, indicating these three compounds are mechanically stable. Meanwhile, the elastic constant <em>C</em><sub>11</sub> decreases from chlorine to bromine to iodine in Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I), meaning that the trend of resistance one-way compression declines. Cs<sub>2</sub>SnCl<sub>6</sub> presents more strong resistance for one-way compression as compared to Cs<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnI<sub>6</sub>. At the same time, the value of elastic constant <em>C</em><sub>44</sub> is less than that of <em>C</em><sub>11</sub>, which indicates that their resistance to pure shear deformation is weaker than that of the one-way compression.</p><div class="table outline_anchor"><div class="table_anchor" style="display: none; "><b>Table 2.</b></div><div class="caption_title" style="display: none; "><b>Table 2.</b></div><table><tr><td class="table-icon-td"><img class="table-icon" src="https://cpb.iphy.ac.cn/html_resources/images/table-icon.gif"/><div style="display: none; " class="table_content"><span class="caption"> <b>Table 2.</b> <p>Calculated elastic properties <em>C<sub>ij</sub></em>, shear anisotropy factor <em>A</em>, bulk modulus <em>B</em>, shear modulus <em>G</em>, Pough’s ratio <em>B/G</em>, Frantesvich ratio <em>G/B</em>, Young’s modulus <em>Y</em>, Poisson’s ratio <em>υ</em>, Kleinman parameter <em>ξ</em>, Debye temperature <em>Θ</em><sub>D</sub>, and melting temperature <em>M</em><sub>t</sub> for Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> .</span><table frame="hsides" rules="groups"> <colgroup> <col align="center"/> <col align="center"/> <col align="center"/> <col align="center"/> </colgroup> <thead> <tr> <th align="center">Properties</th> <th align="center">Cs<sub>2</sub>SnCl<sub>6</sub></th> <th align="center">Cs<sub>2</sub>SnBr6</th> <th align="center">Cs<sub>2</sub>SnI<sub>6</sub></th> </tr> </thead> <tbody> <tr> <td align="center"><em>C</em><sub>11</sub>/GPa</td> <td align="center">36.1</td> <td align="center">22.0</td> <td align="center">14.4</td> </tr> <tr> <td align="center"><em>C</em><sub>12</sub>/GPa</td> <td align="center">17.6</td> <td align="center">11.5</td> <td align="center">7.0</td> </tr> <tr> <td align="center"><em>C</em><sub>44</sub>/GPa</td> <td align="center">15.0</td> <td align="center">10.1</td> <td align="center">6.0</td> </tr> <tr> <td align="center">Shear anisotropy factor <em>A</em></td> <td align="center">1.62</td> <td align="center">1.92</td> <td align="center">1.62</td> </tr> <tr> <td align="center">Bulk modulus <em>B</em>/GPa</td> <td align="center">23.7</td> <td align="center">15</td> <td align="center">9.46</td> </tr> <tr> <td align="center">Shear modulus <em>G</em>/GPa</td> <td align="center">12.3</td> <td align="center">7.76</td> <td align="center">4.94</td> </tr> <tr> <td align="center">Pough’s ratio <em>B</em>/G</td> <td align="center">1.92</td> <td align="center">1.93</td> <td align="center">1.92</td> </tr> <tr> <td align="center">Frantesvich ratio <em>G</em>/B</td> <td align="center">0.52</td> <td align="center">0.51</td> <td align="center">0.52</td> </tr> <tr> <td align="center">Young’s modulus <em>Y</em>/GPa</td> <td align="center">31.5</td> <td align="center">19.8</td> <td align="center">12.6</td> </tr> <tr> <td align="center">Poisson’s ratio <em>υ</em></td> <td align="center">0.27</td> <td align="center">0.27</td> <td align="center">0.28</td> </tr> <tr> <td align="center">Kleinman parameter <em>ξ</em></td> <td align="center">0.61</td> <td align="center">0.64</td> <td align="center">0.61</td> </tr> <tr> <td align="center">Debye temperature <em>Θ</em><sub>D</sub>/K</td> <td align="center">196</td> <td align="center">133</td> <td align="center">96.8</td> </tr> <tr> <td align="center">Melting temperature <em>M</em><sub>t</sub>/K</td> <td align="center">776±300</td> <td align="center">683±300</td> <td align="center">638±300</td> </tr> </tbody> </table></div></td><td align="left" valign="middle"><span class="caption"> <b>Table 2.</b> <p>Calculated elastic properties <em>C<sub>ij</sub></em>, shear anisotropy factor <em>A</em>, bulk modulus <em>B</em>, shear modulus <em>G</em>, Pough’s ratio <em>B/G</em>, Frantesvich ratio <em>G/B</em>, Young’s modulus <em>Y</em>, Poisson’s ratio <em>υ</em>, Kleinman parameter <em>ξ</em>, Debye temperature <em>Θ</em><sub>D</sub>, and melting temperature <em>M</em><sub>t</sub> for Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> .</span></td></tr></table></div><p>Using the elastic constants, some mechanical properties including shear anisotropy factor (<em>A</em>), bulk modulus (<em>B</em>), shear modulus (<em>G</em>), Pough’s ratio (<em>B</em>/<em>G</em>), Frantesvich ratio (<em>G</em>/<em>B</em>), Young’s modulus (<em>Y</em>), Poisson’s ratio (<em>υ</em>) and Kleinman parameter (<em>ξ</em>) are also calculated and presented in Table <xref ref-type="table" rid="cpb_26_9_096301_t2">2</xref>. The shear anisotropy factor <em>A</em> is used to decide the anisotropic or isotropic characteristic of a solid. In general, the shear anisotropic factor for isotropic crystals is <em>A</em> = 1, while for anisotropic crystals it is <em>A</em> ≠ 1. The shear anisotropic factors reported in Table <xref ref-type="table" rid="cpb_26_9_096301_t2">2</xref> indicate Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> compounds are all anisotropic. It is clear that the level of anisotropy for Cs<sub>2</sub>SnBr<sub>6</sub> is the highest among these three defect perovskites. Pough’s ratio B/G and Frantesvich <em>G</em>/<em>B</em> ratio provide the brittleness or ductility of a compound. If <em>B</em>/<em>G</em> < 1.75 (<em>G</em>/<em>B</em> >0.571), the material is brittle, otherwise, the ductile behavior is predicted.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib34">34</a></span>]</sup> Present values of Pough’s ratio for Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnI<sub>6</sub> are bigger than 1.75, therefore these defect perovskites are ductile in nature.</p><p>Young’s modulus <em>Y</em> is an important parameter in showing the stiffness of a solid material. The larger the Young’s modulus, the stiffer the solid material will be. From Table <xref ref-type="table" rid="cpb_26_9_096301_t2">2</xref>, it is clear that the Young’s modulus decreases with large anion size, indicting Cs<sub>2</sub>SnCl<sub>6</sub> is stiffer than Cs<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnI<sub>6</sub>, and the capability of resisting elastic deformation decreases from Cs<sub>2</sub>SnCl<sub>6</sub> to Cs<sub>2</sub>SnBr<sub>6</sub> to Cs<sub>2</sub>SnI<sub>6</sub>. Poisson’s ratio <em>υ</em> gives some informations about the character of force acting on solid materials. The forces among the atoms constituting the material are central if the value of <em>υ</em> lies between 0.25 and 0.50. The obtained Poisson ratio <em>υ</em> for Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnI<sub>6</sub> are just in this range which means that interatomic forces in Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> are central.</p></div><div class="paragraph"><span class="paragraph_title outline_anchor" level="1">3.3. Thermal properties</span><p>Debye temperature <em>Θ</em><sub>D</sub> is a fundamental parameter for materials’ thermodynamic properties, and it is closely related to specific heat, bond strength, elastic constants, and melting temperature.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib35">35</a></span>]</sup> <em>Θ</em><sub>D</sub> can be predicted by the average sound velocity <em>V</em><sub>m</sub> according to<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib33">33</a></span>,<span class="xref"><a href="#cpb_26_9_096301_bib36">36</a></span>]</sup> <table style="width:100%;"><tr><td align="center"><img src="cpb_26_9_096301/cpb_26_9_096301_eqn002.gif" style="max-width: 350px"/></td><td style="width:20px;"></td></tr></table> where <em>h</em> represents Plank’s constant, <em>k</em> is the Boltzman constant, <em>n</em> is the number of atoms per molecule, <em>N</em><sub>A</sub> is the Avogadro number, <em>ρ</em> is the density of the solid, and <em>M</em> represents the molecular weight. The average sound velocity <em>V</em><sub>m</sub> was calculated by<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib33">33</a></span>,<span class="xref"><a href="#cpb_26_9_096301_bib36">36</a></span>]</sup> <table style="width:100%;"><tr><td align="center"><img src="cpb_26_9_096301/cpb_26_9_096301_eqn003.gif" style="max-width: 350px"/></td><td style="width:20px;"></td></tr></table> where <em>v</em><sub>t</sub> and <em>v</em><sub>l</sub> are the transverse and longitudinal sound velocity, respectively, which is calculated by<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib37">37</a></span>]</sup> <table style="width:100%;"><tr><td align="center"><img src="cpb_26_9_096301/cpb_26_9_096301_eqn004.gif" style="max-width: 350px"/></td><td style="width:20px;"></td></tr></table> <table style="width:100%;"><tr><td align="center"><img src="cpb_26_9_096301/cpb_26_9_096301_eqn005.gif" style="max-width: 350px"/></td><td style="width:20px;"></td></tr></table> </p><p>The calculated Debye temperatures of Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I) are also listed in Table <xref ref-type="table" rid="cpb_26_9_096301_t2">2</xref>. Obviously, the values of Debye temperature <em>Θ</em><sub>D</sub> decrease in the following sequence: Cs<sub>2</sub>SnCl<sub>6</sub> >Cs<sub>2</sub>SnBr<sub>6</sub> >Cs<sub>2</sub>SnI<sub>6</sub>. The Cs<sub>2</sub>SnCl<sub>6</sub> presents the highest Debye temperature indicating the higher melting temperature. At present, there are no theoretical calculations as well as experimental measurements reported on the Debye temperature for Cs<sub>2</sub>SnCl<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub>. However, there is a large deviation for the Debye temperature of Cs<sub>2</sub>SnI<sub>6</sub> between the present work 96.8 K and experimental result 149 K obtained by heat capacity data.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib18">18</a></span>]</sup> The main reason is the difference of lattice constant between theoretical calculations and experimental measurement. In general, the lattice constant has an important influence on the calculation of Debye temperature. As a comparison, we use the experimental lattice constant of 11.6527 Å<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib22">22</a></span>]</sup> to calculate the Debye temperature of Cs<sub>2</sub>SnI<sub>6</sub>; the obtained value of <em>Θ</em><sub>D</sub> = 141.2 K is very close to the experimental results.</p><p>The Deby temperature corresponds to the highest frequency of the lattice vibration, which is actually a reflection of the strongest bonding of the crystal. Recently, Kumar <em>et al</em>.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib38">38</a></span>]</sup> obtained a linear relation between Deby temperature and melting temperature for II–VI and III–V semiconductors. In general, for the same compound, a larger Debye temperature means a higher melting temperature.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib39">39</a></span>]</sup> The melting temperature <em>M</em><sub>t</sub> of Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> can be calculated by elastic constants <em>C</em><sub>11</sub> according to the following expression:<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib33">33</a></span>,<span class="xref"><a href="#cpb_26_9_096301_bib40">40</a></span>]</sup> <table style="width:100%;"><tr><td align="center"><img src="cpb_26_9_096301/cpb_26_9_096301_eqn006.gif" style="max-width: 350px"/></td><td style="width:20px;"></td></tr></table> </p><p>Calculated melting temperatures are also shown in Table <xref ref-type="table" rid="cpb_26_9_096301_t2">2</xref>. It is clear that the melting temperature of Cs<sub>2</sub>SnCl<sub>6</sub> is higher than that of Cs<sub>2</sub>SnCl<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub>. The results are in agreement with the results of Debye temperature.</p></div><div class="paragraph"><span class="paragraph_title outline_anchor" level="1">3.4. Electronic properties</span><p>Density of states and band structures calculations predict the direct band gaps at the <em>Г</em> point for Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnI<sub>6</sub>. The results are consistent with the ones of other investigators.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib18">18</a></span>,<span class="xref"><a href="#cpb_26_9_096301_bib22">22</a></span>]</sup> Band gap values, as obtained by PBE and HSE06 using the optimized lattice constants, are listed in Table <xref ref-type="table" rid="cpb_26_9_096301_t3">3</xref>. Obviously, the HSE06 results are a lot closer to the experimental measurements as compared to the PBE ones. The band structure of Cs<sub>2</sub>SnCl<sub>6</sub> indicates a band gap of 3.83 eV, which consists with the experimentally measured optical gap of 3.9 eV and is better than other theoretical calculations. For the Cs<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnI<sub>6</sub>, the direct band gaps are 2.36 and 0.92 eV, respectively, which is lower than the experimentally measured optical gap. There are two main reasons for this discrepancy: one is the difference of lattice constants between theoretical calculations and experimentally measured ones, the other arises from the fact that first-principles calculations often underestimate the band gap.</p><div class="table outline_anchor"><div class="table_anchor" style="display: none; "><b>Table 3.</b></div><div class="caption_title" style="display: none; "><b>Table 3.</b></div><table><tr><td class="table-icon-td"><img class="table-icon" src="https://cpb.iphy.ac.cn/html_resources/images/table-icon.gif"/><div style="display: none; " class="table_content"><span class="caption"> <b>Table 3.</b> <p>Calculated band gap (eV) of Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I) using the PBE and HSE06 functional. Experimental and other theoretical values are also included.</p> .</span><table frame="hsides" rules="groups"> <colgroup> <col align="center"/> <col align="center"/> <col align="center"/> <col align="center"/> </colgroup> <thead> <tr> <th align="center">Compounds</th> <th align="center">Cs<sub>2</sub>SnCl<sub>6</sub></th> <th align="center">Cs<sub>2</sub>SnBr<sub>6</sub></th> <th align="center">Cs<sub>2</sub>SnI<sub>6</sub></th> </tr> </thead> <tbody> <tr> <td align="center">Present (PBE)</td> <td align="center">2.27</td> <td align="center">1.51</td> <td align="center">0.36</td> </tr> <tr> <td align="center">Present (HSE06)</td> <td align="center">3.83</td> <td align="center">2.36</td> <td align="center">0.92</td> </tr> <tr> <td align="center">Experimental</td> <td align="center">3.9<sup><xref rid="cpb_26_9_096301_t3fn1" ref-type="fn">a</xref></sup></td> <td align="center">2.7<sup><xref rid="cpb_26_9_096301_t3fn1" ref-type="fn">a</xref></sup></td> <td align="center">1.26<sup><xref rid="cpb_26_9_096301_t3fn1" ref-type="fn">a</xref></sup></td> </tr> <tr> <td align="center">Experimental</td> <td align="center"/> <td align="center"/> <td align="center">1.25<sup><xref rid="cpb_26_9_096301_t3fn2" ref-type="fn">b</xref></sup></td> </tr> <tr> <td align="center">Theoretical (PBE)</td> <td align="center">2.228<sup><xref rid="cpb_26_9_096301_t3fn1" ref-type="fn">a</xref></sup></td> <td align="center">1.476<sup><xref rid="cpb_26_9_096301_t3fn1" ref-type="fn">a</xref></sup></td> <td align="center">0.346<sup><xref rid="cpb_26_9_096301_t3fn1" ref-type="fn">a</xref></sup></td> </tr> <tr> <td align="center">Theoretical (GW0)</td> <td align="center">3.226<sup><xref rid="cpb_26_9_096301_t3fn1" ref-type="fn">a</xref></sup></td> <td align="center">2.241<sup><xref rid="cpb_26_9_096301_t3fn1" ref-type="fn">a</xref></sup></td> <td align="center">0.883<sup><xref rid="cpb_26_9_096301_t3fn1" ref-type="fn">a</xref></sup></td> </tr> <tr> <td align="center">Theoretical (HSE06)</td> <td align="center"/> <td align="center"/> <td align="center">0.97<sup><xref rid="cpb_26_9_096301_t3fn2" ref-type="fn">b</xref></sup></td> </tr> </tbody> </table><table-wrap-foot> <fn id="cpb_26_9_096301_t3fn1"> <label>a</label> <p>Ref. [<span class="xref"><a href="#cpb_26_9_096301_bib18">18</a></span>].</p> </fn> <fn id="cpb_26_9_096301_t3fn2"> <label>b</label> <p>Ref. [<span class="xref"><a href="#cpb_26_9_096301_bib22">22</a></span>].</p> </fn> </table-wrap-foot></div></td><td align="left" valign="middle"><span class="caption"> <b>Table 3.</b> <p>Calculated band gap (eV) of Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I) using the PBE and HSE06 functional. Experimental and other theoretical values are also included.</p> .</span></td></tr></table></div><p>Figures <xref ref-type="fig" rid="cpb_26_9_096301_f2">2</xref>–<xref ref-type="fig" rid="cpb_26_9_096301_f4">4</xref> present the band structures, total and orbital-projected densities of states (DOSs) for title compounds based on the HSE06. We have not plotted the projected DOS of Cesium since its negligible contribution to the total DOS. It is clear that these three compounds have very similar electronic structures as well as a delicate difference. The orbital-projected DOSs indicate that the conduction band near the Fermi level is mainly composed of halogen p orbitals hybridized with Sn 5s orbitals, and the upper conduction bands, starting from 7.66, 6.12 and 4.38 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnI<sub>6</sub>, respectively. There is a forbidden gap of 2.86 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, 2.85 eV for Cs<sub>2</sub>SnBr<sub>6</sub> and 2.36 eV for Cs<sub>2</sub>SnI<sub>6</sub> between the two conduction bands. On the other hand, the valence band is constituted of the halogen p orbitals, and their band widths are 1.99 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, 2.08 eV for Cs<sub>2</sub>SnBr<sub>6</sub> and 2.22 eV for Cs<sub>2</sub>SnI<sub>6</sub>, respectively. Another halogen p orbital presents hybridization with Sn 5p orbital between −3.40 to −2.75 eV. In a deeper band, from −5.91 eV to −5.59 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, from −6.73 eV to −6.39 eV for Cs<sub>2</sub>SnBr<sub>6</sub> and from −6.95 eV to −6.67 eV for Cs<sub>2</sub>SnI<sub>6</sub>, the valence band is mainly made of the Sn 5s orbital.</p><div class="figure outline_anchor"><div class="figure_anchor" style="display: none; "><b>Fig. 2.</b></div><table><tr><td></td><td align="right" valign="top" ><ul id="sddm"><li><a href="#" onmouseover="mopen('cpb_26_9_096301_f2A')" onmouseout="mclosetime()">Figure Option</a><div id="cpb_26_9_096301_f2A" onmouseover="mcancelclosetime()" onmouseout="mclosetime()"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f2.jpg" title=' <p>(color online) (a) Band structures, (b) total and orbital-projected densities of states for Cs<sub>2</sub>SnCl<sub>6</sub> based on the HSE06.</p> '>View</a><a href="cpb_26_9_096301/cpb_26_9_096301_f2.jpg.zip" >Download</a><a href="cpb_26_9_096301/cpb_26_9_096301_f2.jpg.html" target="_blank" >New Window</a></div></li></ul></td></tr><tr id="cpb_26_9_096301_f2" ><td align="center" valign="middle"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f2.jpg" title=' <p>(color online) (a) Band structures, (b) total and orbital-projected densities of states for Cs<sub>2</sub>SnCl<sub>6</sub> based on the HSE06.</p> '><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f2.jpg" style="max-width: 350px" /></a></td><td align="left" valign="middle"><span class="caption"><b>Fig. 2.</b> (color online) (a) Band structures, (b) total and orbital-projected densities of states for Cs<sub>2</sub>SnCl<sub>6</sub> based on the HSE06.</span></td></tr></table></div><div class="figure outline_anchor"><div class="figure_anchor" style="display: none; "><b>Fig. 3.</b></div><table><tr><td></td><td align="right" valign="top" ><ul id="sddm"><li><a href="#" onmouseover="mopen('cpb_26_9_096301_f3A')" onmouseout="mclosetime()">Figure Option</a><div id="cpb_26_9_096301_f3A" onmouseover="mcancelclosetime()" onmouseout="mclosetime()"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f3.jpg" title=' <p>(color online) (a) Band structures, (b) total and orbital-projected densities of states for Cs<sub>2</sub>SnBr<sub>6</sub> based on the HSE06.</p> '>View</a><a href="cpb_26_9_096301/cpb_26_9_096301_f3.jpg.zip" >Download</a><a href="cpb_26_9_096301/cpb_26_9_096301_f3.jpg.html" target="_blank" >New Window</a></div></li></ul></td></tr><tr id="cpb_26_9_096301_f3" ><td align="center" valign="middle"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f3.jpg" title=' <p>(color online) (a) Band structures, (b) total and orbital-projected densities of states for Cs<sub>2</sub>SnBr<sub>6</sub> based on the HSE06.</p> '><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f3.jpg" style="max-width: 350px" /></a></td><td align="left" valign="middle"><span class="caption"><b>Fig. 3.</b> (color online) (a) Band structures, (b) total and orbital-projected densities of states for Cs<sub>2</sub>SnBr<sub>6</sub> based on the HSE06.</span></td></tr></table></div><div class="figure outline_anchor"><div class="figure_anchor" style="display: none; "><b>Fig. 4.</b></div><table><tr><td></td><td align="right" valign="top" ><ul id="sddm"><li><a href="#" onmouseover="mopen('cpb_26_9_096301_f4A')" onmouseout="mclosetime()">Figure Option</a><div id="cpb_26_9_096301_f4A" onmouseover="mcancelclosetime()" onmouseout="mclosetime()"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f4.jpg" title=' <p>(color online) (a) Band structures, (b) total and orbital-projected densities of states for Cs<sub>2</sub>SnI<sub>6</sub> based on the HSE06.</p> '>View</a><a href="cpb_26_9_096301/cpb_26_9_096301_f4.jpg.zip" >Download</a><a href="cpb_26_9_096301/cpb_26_9_096301_f4.jpg.html" target="_blank" >New Window</a></div></li></ul></td></tr><tr id="cpb_26_9_096301_f4" ><td align="center" valign="middle"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f4.jpg" title=' <p>(color online) (a) Band structures, (b) total and orbital-projected densities of states for Cs<sub>2</sub>SnI<sub>6</sub> based on the HSE06.</p> '><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f4.jpg" style="max-width: 350px" /></a></td><td align="left" valign="middle"><span class="caption"><b>Fig. 4.</b> (color online) (a) Band structures, (b) total and orbital-projected densities of states for Cs<sub>2</sub>SnI<sub>6</sub> based on the HSE06.</span></td></tr></table></div></div><div class="paragraph"><span class="paragraph_title outline_anchor" level="1">3.5. Optic properties</span><p>The optical properties of a semiconductor material are closely related to their electronic band structures; it is usually obtained from the dielectric function by the formula that is given by<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib41">41</a></span>,<span class="xref"><a href="#cpb_26_9_096301_bib42">42</a></span>]</sup> <table style="width:100%;"><tr><td align="center"><img src="cpb_26_9_096301/cpb_26_9_096301_eqn007.gif" style="max-width: 350px"/></td><td style="width:20px;"></td></tr></table> where <em>ω</em> is the angular frequency, and <em>ε</em><sub>1</sub>(<em>ω</em>) and <em>ε</em><sub>2</sub>(<em>ω</em>) are the real and the imaginary parts of the complex dielectric function, respectively.</p><p>The dielectric functions of Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub>, and Cs<sub>2</sub>SnI<sub>6</sub> with changes in photon energy were calculated up to 20.0 eV and shown in Figs. <xref ref-type="fig" rid="cpb_26_9_096301_f5">5</xref> and <xref ref-type="fig" rid="cpb_26_9_096301_f6">6</xref>. The static dielectric constants <em>ε</em><sub>0</sub>(<em>ω</em>) are 2.17 for Cs<sub>2</sub>SnCl<sub>6</sub>, 2.53 for Cs<sub>2</sub>SnBr<sub>6</sub>, and 3.26 for Cs<sub>2</sub>SnI<sub>6</sub> and the values increase with increasing halogen atomic number. The real part <em>ε</em><sub>1</sub>(<em>ω</em>) is positive up to 10.1 eV, 8.70 eV, and 7.23 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub>, and Cs<sub>2</sub>SnI<sub>6</sub>, respectively. In this area, for Cs<sub>2</sub>SnI<sub>6</sub>, the real part has three peaks located at 4.39, 7.15, and 8.45 eV. For Cs<sub>2</sub>SnBr<sub>6</sub>, it presents several peaks at 2.92, 5.93, and 7.03 eV. Also for Cs<sub>2</sub>SnI<sub>6</sub>, its three peaks are located at 1.48, 4.46, and 5.58 eV.</p><div class="figure outline_anchor"><div class="figure_anchor" style="display: none; "><b>Fig. 5.</b></div><table><tr><td></td><td align="right" valign="top" ><ul id="sddm"><li><a href="#" onmouseover="mopen('cpb_26_9_096301_f5A')" onmouseout="mclosetime()">Figure Option</a><div id="cpb_26_9_096301_f5A" onmouseover="mcancelclosetime()" onmouseout="mclosetime()"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f5.jpg" title=' <p>(color online) Real part of the dielectric function for the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> '>View</a><a href="cpb_26_9_096301/cpb_26_9_096301_f5.jpg.zip" >Download</a><a href="cpb_26_9_096301/cpb_26_9_096301_f5.jpg.html" target="_blank" >New Window</a></div></li></ul></td></tr><tr id="cpb_26_9_096301_f5" ><td align="center" valign="middle"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f5.jpg" title=' <p>(color online) Real part of the dielectric function for the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> '><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f5.jpg" style="max-width: 350px" /></a></td><td align="left" valign="middle"><span class="caption"><b>Fig. 5.</b> (color online) Real part of the dielectric function for the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</span></td></tr></table></div><div class="figure outline_anchor"><div class="figure_anchor" style="display: none; "><b>Fig. 6.</b></div><table><tr><td></td><td align="right" valign="top" ><ul id="sddm"><li><a href="#" onmouseover="mopen('cpb_26_9_096301_f6A')" onmouseout="mclosetime()">Figure Option</a><div id="cpb_26_9_096301_f6A" onmouseover="mcancelclosetime()" onmouseout="mclosetime()"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f6.jpg" title=' <p>(color online) Imaginary part of the dielectric function for the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> '>View</a><a href="cpb_26_9_096301/cpb_26_9_096301_f6.jpg.zip" >Download</a><a href="cpb_26_9_096301/cpb_26_9_096301_f6.jpg.html" target="_blank" >New Window</a></div></li></ul></td></tr><tr id="cpb_26_9_096301_f6" ><td align="center" valign="middle"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f6.jpg" title=' <p>(color online) Imaginary part of the dielectric function for the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> '><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f6.jpg" style="max-width: 350px" /></a></td><td align="left" valign="middle"><span class="caption"><b>Fig. 6.</b> (color online) Imaginary part of the dielectric function for the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</span></td></tr></table></div><p>The imaginary dielectric function <em>ε</em><sub>2</sub>(<em>ω</em>) gives some important information on the multifarious interband transitions between the valence and conduction bands. The imaginary part for Cs<sub>2</sub>SnCl<sub>6</sub> exhibits five major absorption peaks at 3.80, 5.19, 7.50, 9.49, and 15.23 eV. The five major absorption peaks of Cs<sub>2</sub>SnBr<sub>6</sub> are located at 2.32, 3.74, 6.54, 8.65, and 15.05 eV. The five major absorption peaks of Cs<sub>2</sub>SnI<sub>6</sub> are located at 0.90, 2.30, 4.98, 7.26, and 14.63 eV. These peaks are associated with the transition from valence bands to conduction ones. The lower energy peaks are relative to the electronic transition between the Cl-3p, Br-4p, and I-5p states in the upper valence bands and the Sn-5s states in conduction bands.</p><p>In addition to the real and imaginary components of the dielectric functions, the refractive index <em>n</em>(<em>ω</em>), extinction coefficient <em>k</em>(<em>ω</em>), absorption coefficient <em>α</em>(<em>ω</em>), reflectivity coefficient <em>R</em>(<em>ω</em>), optical conductivity <em>κ</em>(<em>ω</em>) and energy loss function <em>L</em>(<em>ω</em>) are calculated and plotted in Fig. <xref ref-type="fig" rid="cpb_26_9_096301_f7">7</xref>. Refractive index is an indispensable parameter to describe the optical properties of materials and has an important impact on optic devices such as solar cell and detectors.<sup>[<span class="xref"><a href="#cpb_26_9_096301_bib43">43</a></span>]</sup> From Fig. <xref ref-type="fig" rid="cpb_26_9_096301_f7">7(a)</xref>, the curves of the refractivity index of Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnI<sub>6</sub> coincide with the real part of the dielectric functions. The static refractive index <em>n</em>(0) for low frequency at 0 eV and their peak values are presented in Table <xref ref-type="table" rid="cpb_26_9_096301_t4">4</xref>. It is clear that the <em>n</em>(0) and peak values increase with the increasing of the size of halogen anions. Extinction coefficient <em>k</em>(<em>ω</em>) describes the attenuation of an electromagnetic wave in a material. In the low energy infrared region in Fig. <xref ref-type="fig" rid="cpb_26_9_096301_f7">7(b)</xref>, the value of the extinction coefficient is close to zero, which indicates these three defect perovskites are transmitted to the infrared spectrum.</p><div class="figure outline_anchor"><div class="figure_anchor" style="display: none; "><b>Fig. 7.</b></div><table><tr><td></td><td align="right" valign="top" ><ul id="sddm"><li><a href="#" onmouseover="mopen('cpb_26_9_096301_f7A')" onmouseout="mclosetime()">Figure Option</a><div id="cpb_26_9_096301_f7A" onmouseover="mcancelclosetime()" onmouseout="mclosetime()"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f7.jpg" title=' <p>(color online) Refractive index <em>n</em>(<em>ω</em>), extinction coefficient <em>k</em>(<em>ω</em>), absorption coefficient <em>α</em>(<em>ω</em>), reflectivity coefficient <em>R</em>(<em>ω</em>), optical conductivity <em>κ</em>(<em>ω</em>) and energy loss function <em>L</em>(<em>ω</em>) of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> '>View</a><a href="cpb_26_9_096301/cpb_26_9_096301_f7.jpg.zip" >Download</a><a href="cpb_26_9_096301/cpb_26_9_096301_f7.jpg.html" target="_blank" >New Window</a></div></li></ul></td></tr><tr id="cpb_26_9_096301_f7" ><td align="center" valign="middle"><a class="group3" href="cpb_26_9_096301/cpb_26_9_096301_f7.jpg" title=' <p>(color online) Refractive index <em>n</em>(<em>ω</em>), extinction coefficient <em>k</em>(<em>ω</em>), absorption coefficient <em>α</em>(<em>ω</em>), reflectivity coefficient <em>R</em>(<em>ω</em>), optical conductivity <em>κ</em>(<em>ω</em>) and energy loss function <em>L</em>(<em>ω</em>) of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> '><img src="cpb_26_9_096301/thumbnail/cpb_26_9_096301_f7.jpg" style="max-width: 350px" /></a></td><td align="left" valign="middle"><span class="caption"><b>Fig. 7.</b> (color online) Refractive index <em>n</em>(<em>ω</em>), extinction coefficient <em>k</em>(<em>ω</em>), absorption coefficient <em>α</em>(<em>ω</em>), reflectivity coefficient <em>R</em>(<em>ω</em>), optical conductivity <em>κ</em>(<em>ω</em>) and energy loss function <em>L</em>(<em>ω</em>) of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</span></td></tr></table></div><div class="table outline_anchor"><div class="table_anchor" style="display: none; "><b>Table 4.</b></div><div class="caption_title" style="display: none; "><b>Table 4.</b></div><table><tr><td class="table-icon-td"><img class="table-icon" src="https://cpb.iphy.ac.cn/html_resources/images/table-icon.gif"/><div style="display: none; " class="table_content"><span class="caption"> <b>Table 4.</b> <p>Static refractive index, static reflectivity, maximum refractive index and maximum reflectivity for Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> .</span><table frame="hsides" rules="groups"> <colgroup> <col align="center"/> <col align="center"/> <col align="center"/> <col align="center"/> <col align="center"/> </colgroup> <thead> <tr> <th align="center" rowspan="2">Compounds</th> <th align="center" colspan="2">Refractivity index</th> <th align="center" colspan="2">Reflectivity</th> </tr> <tr> <th align="center"><em>n</em>(0)</th> <th align="center">maximum</th> <th align="center"><em>R</em>(0)</th> <th align="center">maximum</th> </tr> </thead> <tbody> <tr> <td align="center">Cs<sub>2</sub>SnCl<sub>6</sub></td> <td align="center">1.47</td> <td align="center">2.12</td> <td align="center">0.03</td> <td align="center">0.69</td> </tr> <tr> <td align="center">Cs<sub>2</sub>SnBr<sub>6</sub></td> <td align="center">1.59</td> <td align="center">2.23</td> <td align="center">0.05</td> <td align="center">0.60</td> </tr> <tr> <td align="center">Cs<sub>2</sub>SnI<sub>6</sub></td> <td align="center">1.81</td> <td align="center">2.39</td> <td align="center">0.08</td> <td align="center">0.61</td> </tr> </tbody> </table></div></td><td align="left" valign="middle"><span class="caption"> <b>Table 4.</b> <p>Static refractive index, static reflectivity, maximum refractive index and maximum reflectivity for Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> .</span></td></tr></table></div><p>The absorption coefficient can be further calculated according to the refractive index and extinction coefficient. From Fig. <xref ref-type="fig" rid="cpb_26_9_096301_f7">7(c)</xref>, one can see that the absorption edges are located at 3.96, 2.52, and 1.07 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub>, and Cs<sub>2</sub>SnI<sub>6</sub>, respectively. These absorption edge values are near the corresponding band gaps as predicted by the HSE06 method. The absorption spectrum of the intrinsic defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>2</sub> is mainly concentrated in the ultraviolet region. With the increase of the number of halogen atoms, the absorption spectra have an obvious red shift, which means the Cs<sub>2</sub>SnI<sub>2</sub> is a promising material for photoelectric conversion. Moreover, there are five obvious characteristic peaks in the absorption spectrum. The positions of the peaks and the absorption edges are all presented in Table <xref ref-type="table" rid="cpb_26_9_096301_t5">5</xref>. Obviously, the position moves towards a low energy area with the increasing size of the halogen ions, and the strongest peak is located at 15.9 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, 9.73 eV for Cs<sub>2</sub>SnBr<sub>6</sub>, and 8.29 eV for Cs<sub>2</sub>SnI<sub>6</sub>, respectively. In the low energy range, the absorption coefficient is close to zero, indicating that its absorption of light waves in the low energy range is not obvious.</p><div class="table outline_anchor"><div class="table_anchor" style="display: none; "><b>Table 5.</b></div><div class="caption_title" style="display: none; "><b>Table 5.</b></div><table><tr><td class="table-icon-td"><img class="table-icon" src="https://cpb.iphy.ac.cn/html_resources/images/table-icon.gif"/><div style="display: none; " class="table_content"><span class="caption"> <b>Table 5.</b> <p>The positions (eV) of the characteristic peaks and the absorption edges in the absorption spectrum for Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> .</span><table frame="hsides" rules="groups"> <colgroup> <col align="center"/> <col align="center"/> <col align="center"/> <col align="center"/> <col align="center"/> <col align="center"/> <col align="center"/> </colgroup> <thead> <tr> <th align="center">Compounds</th> <th align="center">Edge</th> <th align="center">Peak1</th> <th align="center">Peak2</th> <th align="center">Peak3</th> <th align="center">Peak4</th> <th align="center">Peak5</th> </tr> </thead> <tbody> <tr> <td align="center">Cs<sub>2</sub>SnCl<sub>6</sub></td> <td align="center">3.96</td> <td align="center">5.26</td> <td align="center">7.62</td> <td align="center">10.3</td> <td align="center">11.1</td> <td align="center">15.9</td> </tr> <tr> <td align="center">Cs<sub>2</sub>SnBr<sub>6</sub></td> <td align="center">2.52</td> <td align="center">3.85</td> <td align="center">6.59</td> <td align="center">9.01</td> <td align="center">9.73</td> <td align="center">15.3</td> </tr> <tr> <td align="center">Cs<sub>2</sub>SnI<sub>6</sub></td> <td align="center">1.07</td> <td align="center">2.40</td> <td align="center">5.10</td> <td align="center">7.46</td> <td align="center">8.29</td> <td align="center">15.0</td> </tr> </tbody> </table></div></td><td align="left" valign="middle"><span class="caption"> <b>Table 5.</b> <p>The positions (eV) of the characteristic peaks and the absorption edges in the absorption spectrum for Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I).</p> .</span></td></tr></table></div><p>The static reflectivity <em>R</em>(0) and the maximum reflectivity of the title compounds are listed in Table <xref ref-type="table" rid="cpb_26_9_096301_t4">4</xref>. Figure <xref ref-type="fig" rid="cpb_26_9_096301_f7">7(d)</xref> depicts the curves of reflectivity as a functional of photon energy. It is clear that the zero frequency reflectivity increases in the following sequence: Cs<sub>2</sub>SnCl<sub>6</sub><Cs<sub>2</sub>SnBr<sub>6</sub><Cs<sub>2</sub>SnI<sub>6</sub>. The reflectivity for these three compounds in the infrared region is lower than 8.0% reflecting the case that the effect of surface reflection and internal grain boundary reflection on the low energy infrared wave band is small. The wavelength of the maximum reflectivity is obtained around 74.95 nm for Cs<sub>2</sub>SnCl<sub>6</sub>, 77.69 nm for Cs<sub>2</sub>SnBr<sub>6</sub>, and 138.9 nm for Cs<sub>2</sub>SnI<sub>6</sub>, respectively.</p><p>The optical conductivity, which is decided by refractive index and absorption coefficient, is usually used to investigate the optical response of material. From Fig. <xref ref-type="fig" rid="cpb_26_9_096301_f7">7(e)</xref>, one can see that the optical conductivity follows the same trend as that of the absorption coefficient with increasing phonon energy. The optical conductivity of Cs<sub>2</sub>SnCl<sub>6</sub> is zero when the phonon energy is smaller than 3.96 eV and bigger than 17.59 eV. For Cs<sub>2</sub>SnBr<sub>6</sub>, the optical conductivity is zero when the phonon energy is smaller than 2.52 eV and bigger than 18.10 eV. Also for Cs<sub>2</sub>SnI<sub>6</sub>, the optical conductivity is zero when the phonon energy is smaller than 1.07 eV and bigger than 19.87 eV. The maximum optical conductivity appears when the energy is 9.51, 8.71, and 7.24 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub>, and Cs<sub>2</sub>SnI<sub>6</sub>, respectively.</p><p>The energy loss function is an important parameter in describing the energy loss when electrons pass through a dielectric. The function is directly relative to the real and imaginary components of dielectric functions, and the peak of the loss function is associated with plasma oscillation. Figure <xref ref-type="fig" rid="cpb_26_9_096301_f7">7(f)</xref> depicts the energy loss function as a function of photon energy. One can see that the energy loss in two regions is very large, and the maximum energy loss points are located at 16.85, 16.23, and 10.85 eV for Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub>, and Cs<sub>2</sub>SnI<sub>6</sub>u, respectively. The electronic energy loss for these three compounds is close to zero when the energy is bigger than 20.0 eV.</p></div></div><div class="paragraph"><span class="paragraph_title outline_anchor" level="1">4. Conclusion</span><p>Employing the first-principles method within the PBE and HSE06 functional, we carried out a comprehensive study on the structural, mechanical, thermal, electronic, and optical properties of the defect perovskites Cs<sub>2</sub>SnCl<sub>6</sub>, Cs<sub>2</sub>SnBr<sub>6</sub>, and Cs<sub>2</sub>SnI<sub>6</sub>. The results indicate that the optimized lattice parameters are in good agreement with the available theoretical and experimental data. These three compounds are mechanically stable and they are all anisotropic and ductile in nature. Calculated Debye temperature and melting temperature decrease from Cs<sub>2</sub>SnCl<sub>6</sub> to Cs<sub>2</sub>SnBr<sub>6</sub> to Cs<sub>2</sub>SnI<sub>6</sub>. Density of states and band structures indicate direct band gaps for all the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub>, which accords with other theoretical investigations. Orbital-projected DOSs indicate that the contribution to the conduction band mainly originates from the halogen p orbitals hybridized with Sn 5s orbitals, whereas the contribution to the valence band is consisted of the halogen p orbitals. Some parameters, which are closely related to optical properties such as dielectric functions, refractive index, extinction coefficient, absorption coefficient, reflectivity coefficient, optical conductivity, and energy loss function, are studied theoretically for the first time. The results indicate that these three materials exhibit good optical absorption in the ultraviolet region, and the absorption spectra red shift with the increase of the number of halogen atoms. In conclusion, these three defect perovskites are good candidates for probing the lead-free and high-power conversion efficiency of solar cells materials owing to their stable mechanical properties and excellent optical absorption in the ultraviolet region.</p></div> </div> <div class="article_reference"> <span class="outline_anchor article_reference_title"><b>Reference</b></span> <!-- <div class="layout-btn"> <div id="layout-btn1"> <a href="javascript:;">View Option</a> <div id="layout-btn-arrows1" class="layout-btn-arrows-down"></div> </div> <ul id="layout-btn-ul1" style="display: none;"> <li><a href="javascript:;" class="ref_sort" type="1">Original</a></li> <li><a href="javascript:;" class="ref_sort" type="2">Published date</a></li> <li><a href="javascript:;" class="ref_sort" type="3">Cited within</a></li> <li><a href="javascript:;" class="ref_sort" type="4">Journal IF</a></li> </ul> </div> --> <div class="clear"></div> <table> <tr id="cpb_26_9_096301_bib1" ><td class="label"><span>[1]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Chung</surname> <given-names>I</given-names> </name> <name> <surname>Lee</surname> <given-names>B</given-names> </name> <name> <surname>He</surname> <given-names>J</given-names> </name> <name> <surname>Chang</surname> <given-names>R P H</given-names> </name> <name> <surname>Kanatzidis</surname> <given-names>M G</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1038/nature11067" target="_blank">2012 <i>Nature</i> <b>485</b> 486</a></td></tr><tr id="cpb_26_9_096301_bib2" ><td class="label"><span>[2]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Baikie</surname> <given-names>T</given-names> </name> <name> <surname>Fang</surname> <given-names>Y</given-names> </name> <name> <surname>Kadro</surname> <given-names>J M</given-names> </name> <name> <surname>Schreyer</surname> <given-names>M</given-names> </name> <name> <surname>Wei</surname> <given-names>F</given-names> </name> <name> <surname>Mhaisalkar</surname> <given-names>S G</given-names> </name> <name> <surname>Graetzeld</surname> <given-names>M</given-names> </name> <name> <surname>Whitec</surname> <given-names>T J</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1039/c3ta10518k" target="_blank">2013 <i>J. Mater. Chem.</i> <b>1</b> 5628</a></td></tr><tr id="cpb_26_9_096301_bib3" ><td class="label"><span>[3]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Zhou</surname> <given-names>H</given-names> </name> <name> <surname>Chen</surname> <given-names>Q</given-names> </name> <name> <surname>Li</surname> <given-names>G</given-names> </name> <name> <surname>Luo</surname> <given-names>S</given-names> </name> <name> <surname>Song</surname> <given-names>T B</given-names> </name> <name> <surname>Duan</surname> <given-names>H S</given-names> </name> <name> <surname>Hong</surname> <given-names>Z</given-names> </name> <name> <surname>You</surname> <given-names>J</given-names> </name> <name> <surname>Liu</surname> <given-names>Y</given-names> </name> <name> <surname>Yang</surname> <given-names>Y</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1126/science.1254050" target="_blank">2014 <i>Science</i> <b>345</b> 542</a></td></tr><tr id="cpb_26_9_096301_bib4" ><td class="label"><span>[4]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Brivio</surname> <given-names>F</given-names> </name> <name> <surname>Walker</surname> <given-names>A B</given-names> </name> <name> <surname>Walsh</surname> <given-names>A</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1063/1.4824147" target="_blank">2013 <i>APL Mater.</i> <b>1</b> 042111</a></td></tr><tr id="cpb_26_9_096301_bib5" ><td class="label"><span>[5]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Eperon</surname> <given-names>G E</given-names> </name> <name> <surname>Paternò</surname> <given-names>G M</given-names> </name> <name> <surname>Sutton</surname> <given-names>R J</given-names> </name> <name> <surname>Zampetti</surname> <given-names>A</given-names> </name> <name> <surname>Haghighirad</surname> <given-names>A A</given-names> </name> <name> <surname>Cacialli</surname> <given-names>F</given-names> </name> <name> <surname>Snaith</surname> <given-names>H J</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1039/C5TA06398A" target="_blank">2015 <i>J. Mater. Chem.</i> <b>3</b> 19688</a></td></tr><tr id="cpb_26_9_096301_bib6" ><td class="label"><span>[6]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Weller</surname> <given-names>M T</given-names> </name> <name> <surname>Weber</surname> <given-names>O J</given-names> </name> <name> <surname>Henry</surname> <given-names>P F</given-names> </name> <name> <surname>Di Pumpo</surname> <given-names>A M</given-names> </name> <name> <surname>Hansen</surname> <given-names>T C</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1039/C4CC09944C" target="_blank">2015 <i>Chem. Commun.</i> <b>51</b> 4180</a></td></tr><tr id="cpb_26_9_096301_bib7" ><td class="label"><span>[7]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Lee</surname> <given-names>C</given-names> </name> <name> <surname>Hong</surname> <given-names>J</given-names> </name> <name> <surname>Stroppa</surname> <given-names>A</given-names> </name> <name> <surname>Whangbo</surname> <given-names>M H</given-names> </name> <name> <surname>Shim</surname> <given-names>J H</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1039/C5RA12536G" target="_blank">2015 <i>RSC Adv.</i> <b>5</b> 78701</a></td></tr><tr id="cpb_26_9_096301_bib8" ><td class="label"><span>[8]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Feng</surname> <given-names>J</given-names> </name> <name> <surname>Xiao</surname> <given-names>B</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1021/jp506498k" target="_blank">2014 <i>J. Phys. Chem.</i> <b>118</b> 19655</a></td></tr><tr id="cpb_26_9_096301_bib9" ><td class="label"><span>[9]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Yuan</surname> <given-names>Y</given-names> </name> <name> <surname>Xu</surname> <given-names>R</given-names> </name> <name> <surname>Xu</surname> <given-names>H T</given-names> </name> <name> <surname>Hong</surname> <given-names>F</given-names> </name> <name> <surname>Xu</surname> <given-names>F</given-names> </name> <name> <surname>Wang</surname> <given-names>L J</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1088/1674-1056/24/11/116302" target="_blank">2015 <i>Chin. Phys.</i> <b>24</b> 116302</a></td></tr><tr id="cpb_26_9_096301_bib10" ><td class="label"><span>[10]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Du</surname> <given-names>H J</given-names> </name> <name> <surname>Wang</surname> <given-names>W C</given-names> </name> <name> <surname>Zhu</surname> <given-names>J Z</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1088/1674-1056/25/10/108803" target="_blank">2016 <i>Chin. Phys.</i> <b>25</b> 108803</a></td></tr><tr id="cpb_26_9_096301_bib11" ><td class="label"><span>[11]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Kojima</surname> <given-names>A</given-names> </name> <name> <surname>Teshima</surname> <given-names>K</given-names> </name> <name> <surname>Shirai</surname> <given-names>Y</given-names> </name> <name> <surname>Miyasaka</surname> <given-names>T</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1021/ja809598r" target="_blank">2009 <i>J. Am. Chem. Soc.</i> <b>131</b> 6050</a></td></tr><tr id="cpb_26_9_096301_bib12" ><td class="label"><span>[12]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Boix</surname> <given-names>P P</given-names> </name> <name> <surname>Agarwala</surname> <given-names>S</given-names> </name> <name> <surname>Koh</surname> <given-names>T M</given-names> </name> <name> <surname>Mathews</surname> <given-names>N</given-names> </name> <name> <surname>Mhaisalkar</surname> <given-names>S G</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1021/jz502547f" target="_blank">2015 <i>J. Phys. Chem. Lett.</i> <b>6</b> 898</a></td></tr><tr id="cpb_26_9_096301_bib13" ><td class="label"><span>[13]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Lora da Silva</surname> <given-names>E</given-names> </name> <name> <surname>Skelton</surname> <given-names>J M</given-names> </name> <name> <surname>Parker</surname> <given-names>S C</given-names> </name> <name> <surname>Walsh</surname> <given-names>A</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1103/PhysRevB.91.144107" target="_blank">2015 <i>Phys. Rev.</i> <b>91</b> 144107</a></td></tr><tr id="cpb_26_9_096301_bib14" ><td class="label"><span>[14]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Szafranski</surname> <given-names>M</given-names> </name> <name> <surname>Katrusiak</surname> <given-names>A</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1021/acs.jpclett.6b01648" target="_blank">2016 <i>J. Phys. Chem. Lett.</i> <b>7</b> 3458</a></td></tr><tr id="cpb_26_9_096301_bib15" ><td class="label"><span>[15]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Yi</surname> <given-names>H T</given-names> </name> <name> <surname>Wu</surname> <given-names>X X</given-names> </name> <name> <surname>Zhu</surname> <given-names>X Y</given-names> </name> <name> <surname>Podzorov</surname> <given-names>V</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1002/adma.201600011" target="_blank">2016 <i>Adv. Mater.</i> <b>28</b> 6509</a></td></tr><tr id="cpb_26_9_096301_bib16" ><td class="label"><span>[16]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Chen</surname> <given-names>Z</given-names> </name> <name> <surname>Wang</surname> <given-names>J J</given-names> </name> <name> <surname>Ren</surname> <given-names>Y</given-names> </name> <name> <surname>Yu</surname> <given-names>C</given-names> </name> <name> <surname>Shum</surname> <given-names>K</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1063/1.4748888" target="_blank">2012 <i>Appl. Phys. Lett.</i> <b>101</b> 093901</a></td></tr><tr id="cpb_26_9_096301_bib17" ><td class="label"><span>[17]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Qiu</surname> <given-names>X F</given-names> </name> <name> <surname>Cao</surname> <given-names>B Q</given-names> </name> <name> <surname>Yuan</surname> <given-names>S</given-names> </name> <name> <surname>Chen</surname> <given-names>X F</given-names> </name> <name> <surname>Qiu</surname> <given-names>Z W</given-names> </name> <name> <surname>Jiang</surname> <given-names>Y N</given-names> </name> <name> <surname>Ye</surname> <given-names>Q</given-names> </name> <name> <surname>Wang</surname> <given-names>H Q</given-names> </name> <name> <surname>Zeng</surname> <given-names>H B</given-names> </name> <name> <surname>Liu</surname> <given-names>J</given-names> </name> <name> <surname>Kanatzidis</surname> <given-names>M G</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1016/j.solmat.2016.09.022" target="_blank">2017 <i>Sol. Energy Mater. Sol. Cells</i> <b>159</b> 227</a></td></tr><tr id="cpb_26_9_096301_bib18" ><td class="label"><span>[18]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Kaltzoglou</surname> <given-names>A</given-names> </name> <name> <surname>Antoniadou</surname> <given-names>M</given-names> </name> <name> <surname>Kontos</surname> <given-names>A G</given-names> </name> <name> <surname>Stoumpos</surname> <given-names>C C</given-names> </name> <name> <surname>Perganti</surname> <given-names>D</given-names> </name> <name> <surname>Siranidi</surname> <given-names>E</given-names> </name> <name> <surname>Raptis</surname> <given-names>V</given-names> </name> <name> <surname>Trohidou</surname> <given-names>K N</given-names> </name> <name> <surname>Psycharis</surname> <given-names>V</given-names> </name> <name> <surname>Kanatzidis</surname> <given-names>M G</given-names> </name> <name> <surname>Falaras</surname> <given-names>P</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1021/acs.jpcc.6b02175" target="_blank">2016 <i>J. Phys. Chem.</i> <b>120</b> 11777</a></td></tr><tr id="cpb_26_9_096301_bib19" ><td class="label"><span>[19]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Maughan</surname> <given-names>A E</given-names> </name> <name> <surname>Ganose</surname> <given-names>A M</given-names> </name> <name> <surname>Bordelon</surname> <given-names>M M</given-names> </name> <name> <surname>Miller</surname> <given-names>E M</given-names> </name> <name> <surname>Scanlon</surname> <given-names>D O</given-names> </name> <name> <surname>Neilson</surname> <given-names>J R</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1021/jacs.6b03207" target="_blank">2016 <i>J. Am. Chem. Soc.</i> <b>138</b> 8453</a></td></tr><tr id="cpb_26_9_096301_bib20" ><td class="label"><span>[20]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Xiao</surname> <given-names>Z W</given-names> </name> <name> <surname>Lei</surname> <given-names>H C</given-names> </name> <name> <surname>Zhang</surname> <given-names>X</given-names> </name> <name> <surname>Zhou</surname> <given-names>Y Y</given-names> </name> <name> <surname>Hosono</surname> <given-names>H</given-names> </name> <name> <surname>Kamiya</surname> <given-names>T</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1246/bcsj.20150110" target="_blank">2015 <i>Bull. Chem. Soc. Jpn.</i> <b>88</b> 1250</a></td></tr><tr id="cpb_26_9_096301_bib21" ><td class="label"><span>[21]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Lee</surname> <given-names>B</given-names> </name> <name> <surname>Stoumpos</surname> <given-names>C C</given-names> </name> <name> <surname>Zhou</surname> <given-names>N J</given-names> </name> <name> <surname>Hao</surname> <given-names>F</given-names> </name> <name> <surname>Malliakas</surname> <given-names>C</given-names> </name> <name> <surname>Yeh</surname> <given-names>C Y</given-names> </name> <name> <surname>Marks</surname> <given-names>T J</given-names> </name> <name> <surname>Kanatzidis</surname> <given-names>M G</given-names> </name> <name> <surname>Chang</surname> <given-names>R P H</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1021/ja508464w" target="_blank">2014 <i>J. Am. Chem. Soc.</i> <b>136</b> 15379</a></td></tr><tr id="cpb_26_9_096301_bib22" ><td class="label"><span>[22]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Xiao</surname> <given-names>Z W</given-names> </name> <name> <surname>Zhou</surname> <given-names>Y Y</given-names> </name> <name> <surname>Hosono</surname> <given-names>H</given-names> </name> <name> <surname>Kamiya</surname> <given-names>T</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1039/C5CP03102H" target="_blank">2015 <i>Phys. Chem. Chem. Phys.</i> <b>17</b> 18900</a></td></tr><tr id="cpb_26_9_096301_bib23" ><td class="label"><span>[23]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Saparov</surname> <given-names>B</given-names> </name> <name> <surname>Sun</surname> <given-names>J P</given-names> </name> <name> <surname>Meng</surname> <given-names>W W</given-names> </name> <name> <surname>Xiao</surname> <given-names>Z W</given-names> </name> <name> <surname>Duan</surname> <given-names>H S</given-names> </name> <name> <surname>Gunawan</surname> <given-names>O</given-names> </name> <name> <surname>Shin</surname> <given-names>D</given-names> </name> <name> <surname>Hill</surname> <given-names>I G</given-names> </name> <name> <surname>Yan</surname> <given-names>Y F</given-names> </name> <name> <surname>Mitzi</surname> <given-names>D B</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1021/acs.chemmater.6b00433" target="_blank">2016 <i>Chem. Mater.</i> <b>28</b> 2315</a></td></tr><tr id="cpb_26_9_096301_bib24" ><td class="label"><span>[24]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Feng</surname> <given-names>J</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1063/1.4885256" target="_blank">2014 <i>APL Mater.</i> <b>2</b> 081801</a></td></tr><tr id="cpb_26_9_096301_bib25" ><td class="label"><span>[25]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Kresse</surname> <given-names>G</given-names> </name> <name> <surname>Furthmuller</surname> <given-names>J</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1016/0927-0256(96)00008-0" target="_blank">1996 <i>Comput. Mater. Sci.</i> <b>6</b> 15</a></td></tr><tr id="cpb_26_9_096301_bib26" ><td class="label"><span>[26]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Perdew</surname> <given-names>J P</given-names> </name> <name> <surname>Burke</surname> <given-names>K</given-names> </name> <name> <surname>Ernzerhof</surname> <given-names>M</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1103/PhysRevLett.77.3865" target="_blank">1996 <i>Phys. Rev. Lett.</i> <b>77</b> 3865</a></td></tr><tr id="cpb_26_9_096301_bib27" ><td class="label"><span>[27]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Heyd</surname> <given-names>J</given-names> </name> <name> <surname>Scuseria</surname> <given-names>G E</given-names> </name> <name> <surname>Ernzerhof</surname> <given-names>M</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1063/1.2204597" target="_blank">2006 <i>J. Chem. Phys.</i> <b>124</b> 219906</a></td></tr><tr id="cpb_26_9_096301_bib28" ><td class="label"><span>[28]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Torres</surname> <given-names>D T</given-names> </name> <name> <surname>Freire</surname> <given-names>J D</given-names> </name> <name> <surname>Katiyar</surname> <given-names>R S</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1103/PhysRevB.56.7763" target="_blank">1997 <i>Phys. Rev.</i> <b>56</b> 7763</a></td></tr><tr id="cpb_26_9_096301_bib29" ><td class="label"><span>[29]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Brill</surname> <given-names>T B</given-names> </name> <name> <surname>Gerhart</surname> <given-names>R C</given-names> </name> <name> <surname>Welsh</surname> <given-names>W A</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1016/0022-2364(74)90101-2" target="_blank">1974 <i>J. Magn. Reson.</i> <b>13</b> 27</a></td></tr><tr id="cpb_26_9_096301_bib30" ><td class="label"><span>[30]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Ketelaar</surname> <given-names>J A A</given-names> </name> <name> <surname>Rietdijk</surname> <given-names>A A</given-names> </name> <name> <surname>van Staveren</surname> <given-names>C H</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1002/recl.v56:9" target="_blank">2010 <i>Recl. Trav. Chim. Pays-Bas</i> <b>56</b> 907</a></td></tr><tr id="cpb_26_9_096301_bib31" ><td class="label"><span>[31]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Stoumpos</surname> <given-names>C C</given-names> </name> <name> <surname>Malliakas</surname> <given-names>C D</given-names> </name> <name> <surname>Kanatzidis</surname> <given-names>M G</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1021/ic401215x" target="_blank">2013 <i>Inorg. Chem.</i> <b>52</b> 9019</a></td></tr><tr id="cpb_26_9_096301_bib32" ><td class="label"><span>[32]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Wang</surname> <given-names>G T</given-names> </name> <name> <surname>Wang</surname> <given-names>D Y</given-names> </name> <name> <surname>Shi</surname> <given-names>X B</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1063/1.4939016" target="_blank">2015 <i>AIP Advances</i> <b>5</b> 127224</a></td></tr><tr id="cpb_26_9_096301_bib33" ><td class="label"><span>[33]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Gu</surname> <given-names>J B</given-names> </name> <name> <surname>Wang</surname> <given-names>C J</given-names> </name> <name> <surname>Zhang</surname> <given-names>W X</given-names> </name> <name> <surname>Bin</surname> <given-names>Sun</given-names> </name> <name> <surname>Liu</surname> <given-names>G Q</given-names> </name> <name> <surname>Liu</surname> <given-names>D D</given-names> </name> <name> <surname>Yang</surname> <given-names>X D</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1088/1674-1056/25/12/126103" target="_blank">2016 <i>Chin. Phys.</i> <b>25</b> 126103</a></td></tr><tr id="cpb_26_9_096301_bib34" ><td class="label"><span>[34]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Pugh</surname> <given-names>S F</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1080/14786440808520496" target="_blank">1954 <i>Philos. Mag.</i> <b>45</b> 823</a></td></tr><tr id="cpb_26_9_096301_bib35" ><td class="label"><span>[35]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Duan</surname> <given-names>Y H</given-names> </name> <name> <surname>Sun</surname> <given-names>Y</given-names> </name> <name> <surname>Peng</surname> <given-names>M J</given-names> </name> <name> <surname>Zhou</surname> <given-names>S G</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1016/j.jallcom.2013.09.211" target="_blank">2014 <i>J. Alloy. Compd.</i> <b>585</b> 587</a></td></tr><tr id="cpb_26_9_096301_bib36" ><td class="label"><span>[36]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Anderson</surname> <given-names>O L</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1016/0022-3697(63)90067-2" target="_blank">1963 <i>J. Phys. Chem. Solids</i> <b>24</b> 909</a></td></tr><tr id="cpb_26_9_096301_bib37" ><td class="label"><span>[37]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Mujica</surname> <given-names>A</given-names> </name> <name> <surname>Needs</surname> <given-names>R J</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1088/0953-8984/8/15/001" target="_blank">1996 <i>J. Phys.: Conden. Matter</i> <b>8</b> L237</a></td></tr><tr id="cpb_26_9_096301_bib38" ><td class="label"><span>[38]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Kumar</surname> <given-names>V</given-names> </name> <name> <surname>Jha</surname> <given-names>V</given-names> </name> <name> <surname>Shrivastava</surname> <given-names>A K</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1002/crat.201000268" target="_blank">2010 <i>Cryst. Res. Technol.</i> <b>45</b> 920</a></td></tr><tr id="cpb_26_9_096301_bib39" ><td class="label"><span>[39]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Lu</surname> <given-names>W F</given-names> </name> <name> <surname>Li</surname> <given-names>C J</given-names> </name> <name> <surname>Sarac</surname> <given-names>B</given-names> </name> <name> <surname>Şopu</surname> <given-names>D</given-names> </name> <name> <surname>Yi</surname> <given-names>J H</given-names> </name> <name> <surname>Tan</surname> <given-names>J</given-names> </name> <name> <surname>Stoica</surname> <given-names>M</given-names> </name> <name> <surname>Eckert</surname> <given-names>J</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1016/j.jallcom.2017.02.085" target="_blank">2017 <i>J. Alloy. Compd.</i> <b>705</b> 445</a></td></tr><tr id="cpb_26_9_096301_bib40" ><td class="label"><span>[40]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Fine</surname> <given-names>M E</given-names> </name> <name> <surname>Brown</surname> <given-names>M D</given-names> </name> <name> <surname>Marcus</surname> <given-names>H L</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1016/0036-9748(84)90267-9" target="_blank">1984 <i>Scr. Metall.</i> <b>18</b> 951</a></td></tr><tr id="cpb_26_9_096301_bib41" ><td class="label"><span>[41]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Parvin</surname> <given-names>R</given-names> </name> <name> <surname>Parvin</surname> <given-names>F</given-names> </name> <name> <surname>Ali</surname> <given-names>M S</given-names> </name> <name> <surname>Islam</surname> <given-names>A K M A</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1088/1674-1056/25/8/083101" target="_blank">2016 <i>Chin. Phys.</i> <b>25</b> 083101</a></td></tr><tr id="cpb_26_9_096301_bib42" ><td class="label"><span>[42]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Fahad</surname> <given-names>S</given-names> </name> <name> <surname>Murtaza</surname> <given-names>G</given-names> </name> <name> <surname>Ouahrani</surname> <given-names>T</given-names> </name> <name> <surname>Khenata</surname> <given-names>R</given-names> </name> <name> <surname>Yousaf</surname> <given-names>M</given-names> </name> <name> <surname>Omran</surname> <given-names>S B</given-names> </name> <name> <surname>Mohammad</surname> <given-names>S</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1016/j.jallcom.2015.06.026" target="_blank">2015 <i>J. Alloy. Compd.</i> <b>646</b> 211</a></td></tr><tr id="cpb_26_9_096301_bib43" ><td class="label"><span>[43]</span></td><td class="citation"><person-group person-group-type="author"> <name> <surname>Zhao</surname> <given-names>S</given-names> </name> <name> <surname>Lan</surname> <given-names>C</given-names> </name> <name> <surname>Ma</surname> <given-names>J</given-names> </name> <name> <surname>Pandey</surname> <given-names>S S</given-names> </name> <name> <surname>Hayase</surname> <given-names>S</given-names> </name> <name> <surname>Ma</surname> <given-names>T</given-names> </name> </person-group> <a href="http://dx.doi.org/10.1016/j.ssc.2015.04.012" target="_blank">2015 <i>Solid State Commun.</i> <b>213-214</b> 19</a></td></tr> </table> <div class="clear"></div> </div> </div> <div class="clear"></div> </div> <input type="hidden" id="resourceLink" value="https://cpb.iphy.ac.cn/html_resources/"/> <div id="title-banner" style="top: 0px;display: none;"> <div class="content"> <div class="btn-g"><span class="img"></span> <a href="#close" class="btn-close"></a></div> <div class="title" align="center"> First-principles investigations on the mechanical, thermal, electronic, and optical properties of the defect perovskites Cs<sub>2</sub>Sn<em>X</em><sub>6</sub> (<em>X</em> = Cl, Br, I) </div> <div class="author_name_list" align="center"> [Huang Hai-Ming<sup>1, 2</sup>, Jiang Zhen-Yi<sup>1, †</sup>, Luo Shi-Jun<sup>2</sup>] </div> </div> </div> </body> </html>